Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Adv Mater ; : e2402963, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616302

RESUMO

The selective oxygen reduction reaction (ORR) is important for various energy conversion processes such as the fuel cells and metal-air batteries for the 4e- pathway and hydrogen peroxide (H2O2) electrosynthesis for the 2e- pathway. However, it remains a challenge to tune the ORR selectivity of a catalyst in a controllable manner. Herein, an efficient strategy for introducing sulfur dopants to regulate the ORR selectivity of main-group Sb-N-C single-atom catalysts  is reported. Significantly, Sb-N-C with the highest sulfur content follows a 2e- pathway with high H2O2 selectivity (96.8%) and remarkable mass activity (96.1 A g-1 at 0.65 V), while the sister catalyst with the lowest sulfur content directs a 4e- pathway with a half-wave potential (E1/2 = 0.89 V) that is more positive than commercial Pt/C. In addition, practical applications for these two 2e-/4e- ORR catalysts are demonstrated by bulk H2O2 electrosynthesis for the degradation of organic pollutants and a high-power zinc-air battery, respectively. Combined experimental and theoretical studies reveal that the excellent selectivity for the sulfurized Sb-N-Cs is attributed to the optimal adsorption-desorption of the ORR intermediates realized through the electronic structure modulation by the sulfur dopants.

2.
Clin Exp Immunol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517050

RESUMO

Excessive formation of neutrophil extracellular traps (NETs) may lead to myositis-related interstitial lung disease (ILD). There is evidence that NETs can directly injure vascular endothelial cells and play a pathogenic role in the inflammatory exudation of ILD. However, the specific mechanism is unclear. This study aimed to investigate the specific mechanism underlying NET-induced injury to human pulmonary microvascular endothelial cells (HPMECs). HPMECs were stimulated with NETs (200 ng/ml) in vitro. Cell death was detected by propidium iodide staining. The morphological changes of the cells were observed by transmission electron microscopy (TEM). Pyroptosis markers were detected by western blot, immunofluorescence and quantitative real-time PCR, and the related inflammatory factor IL-1ß was verified by ELISA. Compared with the control group, HPMECs mortality increased after NET stimulation, and the number of pyroptosis vacuoles in HPMECs was further observed by TEM. The pulmonary microvascular endothelial cells (PMECs) of the experimental autoimmune myositis (EAM) mouse model also showed a trend of pyroptosis in vivo. Cell experiment further confirmed the significantly high expression of the NLRP3 inflammasome and pyroptosis-related markers, including GSDMD and inflammatory factor IL-1ß. Pretreated with the NLRP3 inhibitor MCC950, the activation of NLRP3 inflammasome and pyroptosis of HPMECs were effectively inhibited. Our study confirmed that NETs promote pulmonary microvascular endothelial pyroptosis by activating the NLRP3 inflammasome, suggesting that NETs-induced pyroptosis of PMECs may be a potential pathogenic mechanism of inflammatory exudation in ILD.

3.
J Agric Food Chem ; 72(11): 5867-5877, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446418

RESUMO

De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.


Assuntos
Ácidos Cumáricos , Polissacarídeos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Celulose/metabolismo , Carbono/metabolismo
4.
Comput Methods Programs Biomed ; 245: 108007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241802

RESUMO

Purpose To minimize the various errors introduced by image-guided radiotherapy (IGRT) in the application of esophageal cancer treatment, this study proposes a novel technique based on the 'CBCT-only' mode of pseudo-medical image guidance. Methods The framework of this technology consists of two pseudo-medical image synthesis models in the CBCT→CT and the CT→PET direction. The former utilizes a dual-domain parallel deep learning model called AWM-PNet, which incorporates attention waning mechanisms. This model effectively suppresses artifacts in CBCT images in both the sinogram and spatial domains while efficiently capturing important image features and contextual information. The latter leverages tumor location and shape information provided by clinical experts. It introduces a PRAM-GAN model based on a prior region aware mechanism to establish a non-linear mapping relationship between CT and PET image domains.  As a result, it enables the generation of pseudo-PET images that meet the clinical requirements for radiotherapy. Results The NRMSE and multi-scale SSIM (MS-SSIM) were utilized to evaluate the test set, and the results were presented as median values with lower quartile and upper quartile ranges. For the AWM-PNet model, the NRMSE and MS-SSIM values were 0.0218 (0.0143, 0.0255) and 0.9325 (0.9141, 0.9410), respectively. The PRAM-GAN model produced NRMSE and MS-SSIM values of 0.0404 (0.0356, 0.0476) and 0.9154 (0.8971, 0.9294), respectively. Statistical analysis revealed significant differences (p < 0.05) between these models and others. The numerical results of dose metrics, including D98 %, Dmean, and D2 %, validated the accuracy of HU values in the pseudo-CT images synthesized by the AWM-PNet. Furthermore, the Dice coefficient results confirmed statistically significant differences (p < 0.05) in GTV delineation between the pseudo-PET images synthesized using the PRAM-GAN model and other compared methods. Conclusion The AWM-PNet and PRAM-GAN models have the capability to generate accurate pseudo-CT and pseudo-PET images, respectively. The pseudo-image-guided technique based on the 'CBCT-only' mode shows promising prospects for application in esophageal cancer radiotherapy.


Assuntos
Neoplasias Esofágicas , Tumores Neuroectodérmicos Primitivos , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
Clin Exp Immunol ; 215(2): 126-136, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37681358

RESUMO

The excessive formation of neutrophil extracellular traps (NETs) has been demonstrated to be a pathogenic mechanism of idiopathic inflammatory myopathy (IIM)-associated interstitial lung disease (ILD). This study aimed to answer whether an experimental autoimmune myositis (EAM) model can be used to study IIM-ILD and whether NETs participate in the development of EAM-ILD. An EAM mouse model was established using skeletal muscle homogenate and pertussis toxin (PTX). The relationship between NETs and the ILD phenotype was determined via histopathological analysis. As NETs markers, serum cell-free DNA (cfDNA) and serum citrullinated histone 3 (Cit-H3)-DNA were tested. The healthy mouse was injected with PTX intraperitoneally to determine whether PTX intervention could induce NETs formation in vivo. Neutrophils isolated from the peripheral blood of healthy individuals were given different interventions to determine whether PTX and skeletal muscle homogenate can induce neutrophils to form NETs in vitro. EAM-ILD had three pathological phenotypes similar to IIM-ILD. Cit-H3, neutrophil myeloperoxidase, and neutrophil elastase were overexpressed in the lungs of EAM model mice. The serum cfDNA level and Cit-H3-DNA complex level were significantly increased in EAM model mice. Serum cfDNA levels were increased significantly in vivo intervention with PTX in mice. Both PTX and skeletal muscle homogenate-induced neutrophils to form NETs in vitro. EAM-ILD pathological phenotypes are similar to IIM-ILD, and NETs are involved in the development of ILD in a murine model of EAM. Thus, the EAM mouse model can be used as an ideal model targeting NETs to prevent and treat IIM-ILD.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Doenças Pulmonares Intersticiais , Miosite , Doença Autoimune do Sistema Nervoso Experimental , Camundongos , Animais , Neutrófilos , Histonas , Doença Autoimune do Sistema Nervoso Experimental/patologia , Modelos Animais de Doenças , DNA
6.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001738

RESUMO

PURPOSE: To develop a deep learning framework based on a hybrid dataset to enhance the quality of CBCT images and obtain accurate HU values. MATERIALS AND METHODS: A total of 228 cervical cancer patients treated in different LINACs were enrolled. We developed an encoder-decoder architecture with residual learning and skip connections. The model was hierarchically trained and validated on 5279 paired CBCT/planning CT images and tested on 1302 paired images. The mean absolute error (MAE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) were utilized to access the quality of the synthetic CT images generated by our model. RESULTS: The MAE between synthetic CT images generated by our model and planning CT was 10.93 HU, compared to 50.02 HU for the CBCT images. The PSNR increased from 27.79 dB to 33.91 dB, and the SSIM increased from 0.76 to 0.90. Compared with synthetic CT images generated by the convolution neural networks with residual blocks, our model had superior performance both in qualitative and quantitative aspects. CONCLUSIONS: Our model could synthesize CT images with enhanced image quality and accurate HU values. The synthetic CT images preserved the edges of tissues well, which is important for downstream tasks in adaptive radiotherapy.

7.
Front Pediatr ; 11: 1189838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732009

RESUMO

Acute respiratory distress syndrome (ARDS) is a rare complication of miliary tuberculosis, particularly in pediatric patients. Comorbidities and delayed diagnosis can worsen the prognosis of patients with miliary tuberculosis. A 12-year-old girl presented with fever for 20 days, and cough and tachypnea for 4 days. She was diagnosed with miliary tuberculosis complicated by pediatric ARDS. She had atypical clinical manifestations and imaging findings, a negative contact history, and negative results of a tuberculin skin test (TST) and T-SPOT.TB. Diagnostic bronchoscopy and bronchoalveolar lavage helped make the diagnosis of tuberculosis. Effective treatment was promptly initiated after confirmation of the diagnosis, and the patient's condition improved. This case illustrates that a negative contact history and laboratory results cannot rule out tuberculosis. False-negative TST and T-SPOT.TB results should be evaluated carefully. Bronchoscopy may be useful for identifying pathogens in patients with pneumonia of unknown etiology, and corticosteroids should be administered with caution.

8.
Int J Biol Macromol ; 253(Pt 5): 127125, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776922

RESUMO

Biomaterials with excellent biocompatibility, mechanical performance, and self-recovery properties are urgently needed for tissue regeneration. Inspired by barnacle cement and spider silk, we genetically designed and overexpressed a fused protein (cp19k-MaSp1) composed of Megabalanus rosa (cp19k) and Nephila clavata dragline silk protein (MaSp1) in Pichia pastoris. The recombinant cp19k-MaSp1 exhibited enhanced adhesion capability beyond those of the individual proteins in both aqueous and non-aqueous conditions. cp19k-MaSp1 protein fiber scaffolds prepared through electrospinning have adequate hydrophilicity compared to cp19k and MaSp1 protein fiber scaffolds, and offer improved overall porosity compared to MaSp1 protein fiber scaffolds. The cp19k-MaSp1 protein fiber scaffolds showed excellent proteolytically stable properties because of only 9.6 % depletion after incubation in a biodegradation solution for 56 d. The cp19k-MaSp1 protein fiber scaffolds present remarkably high extreme tensile strength (112.7 ± 11.6 MPa) and superior ductility (438.4 ± 43.9 %) compared with cp19k (34.4 ± 8.1 MPa, 115.4 ± 32.7 %) and MaSp1 protein fiber scaffolds (65.8 ± 9.3 MPa, 409.6 ± 23.1 %), also 68.4 % of tensile strength was recovered by incubation in K+ buffer after multiple stretches, which create a favorable cell adhesion, growth, and proliferation environment for human umbilical vein endothelial cells (HUVECs). The improved biocompatibility, extensive adhesion, mechanical strength, and self-recovery properties make the bioinspired synthetic cp19k-MaSp1 a potential candidate for biomedical tissue reconstruction.


Assuntos
Fibroínas , Aranhas , Thoracica , Animais , Humanos , Células Endoteliais , Seda
9.
Org Biomol Chem ; 21(32): 6488-6492, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526567

RESUMO

Photocatalytic C(sp3)-H phosphorylation of xanthenes and 9,10-dihydroacridines with P(O)-H compounds under the irradiation of 18 W blue LEDs at room temperature using fluorescein as the photocatalyst and molecular oxygen (O2) as the sole oxidant has been achieved. The newly developed reaction provides direct access to 9-phosphorylated xanthene derivatives with good functional group compatibility.

10.
Clin Exp Immunol ; 213(2): 202-208, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289984

RESUMO

Idiopathic inflammatory myopathies (IIMs) are a group of systemic autoimmune diseases characterized by immune-mediated muscle injury. Abnormal neutrophil extracellular traps (NETs) can be used as a biomarker of IIM disease activity, but the mechanism of NET involvement in IIMs needs to be elucidated. Important components of NETs, including high-mobility group box 1, DNA, histones, extracellular matrix, serum amyloid A, and S100A8/A9, act as damage-associated molecular patterns (DAMPs) to promote inflammation in IIMs. NETs can act on different cells to release large amounts of cytokines and activate the inflammasome, which can subsequently aggravate the inflammatory response. Based on the idea that NETs may be proinflammatory DAMPs of IIMs, we describe the role of NETs, DAMPs, and their interaction in the pathogenesis of IIMs and discuss the possible targeted treatment strategies in IIMs.


Assuntos
Armadilhas Extracelulares , Miosite , Humanos , Neutrófilos , Miosite/patologia , Histonas , Inflamação/patologia , Alarminas
11.
J Chemother ; 35(8): 671-688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36764828

RESUMO

Iron is an essential element for almost all living things. Both iron excess and iron deficiency can damage the body's health, but the body has developed complex mechanisms to regulate iron balance. The imbalance of iron homeostasis and lipid peroxidation are important features of ferroptosis. In this review, we summarize the latest regulatory mechanisms of ferroptosis, the roles of relevant regulators that target ferroptosis for cancer therapy, and their relationship to drug resistance. In conclusion, targeting ferroptosis is an important strategy for cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Ferro , Resistência a Medicamentos , Peroxidação de Lipídeos
12.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363179

RESUMO

Copper is often used as a heat-dissipating material due to its high thermal conductivity. In order to improve its heat dissipation performance, one of the feasible methods is to compound copper with appropriate reinforcing phases. With excellent thermal properties, graphene has become an ideal reinforcing phase and displays great application prospects in metal matrix composites. However, systematic theoretical research is lacking on the thermal conductivity of the copper-graphene interface and associated affecting factors. Molecular dynamics simulation was used to simulate the interfacial thermal conductivity of copper/graphene composites, and the effects of graphene layer number, atomic structure, matrix length, and graphene vacancy rate on thermal boundary conductance (TBC) were investigated. The results show that TBC decreases with an increase in graphene layers and converges when the number of graphene layers is above five. The atomic structure of the copper matrix affects the TBC, which achieves the highest value with the (011) plane at the interface. The length of the copper matrix has little effect on the TBC. As the vacancy rate is between 0 and 4%, TBC increases with the vacancy rate. Our results present insights for future thermal management optimization based on copper matrix composites.

13.
Int J Cardiovasc Imaging ; 38(12): 2763-2770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445669

RESUMO

AIMS: To assess the prognostic value of coronary computed tomography angiography (CTA) and serum biomarkers for the prediction of major adverse cardiac events (MACE) at three-month and one-year follow-ups. METHODS AND RESULTS: A total of 720 patients with acute chest pain and normal electrocardiography (ECG) were included in the prospective cohort study. These patients received both coronary CTA screening and serum biomarkers testing, followed by three-month and one-year follow-ups for the occurrence of major adverse cardiac events (MACE). The primary outcome was the occurrence of MACE, which is defined as acute coronary syndrome (ACS), nonfatal MI, and all-cause mortality. The MACE rate was 17.8% (128 cases) and 25.2% (182 cases) at three-months and one-year follow-up. ApoB/apoA1(OR = 7.45, P < 0.001) and the number of atherosclerotic vessels (OR = 2.86, P < 0.001) were independent predictors for MACE at the three-month follow-up, so were apoB/apoA1 (OR = 5.23, P = 0.003), Serum amyloid protein A (SAA, OR = 1.04, P < 0.001) and the number of atherosclerotic vessels (OR = 2.54, P < 0.001) at the one-year follow-up. While apoB/apoA1 suggested its sensitivities of 84% for predicting MACE at three-month follow-ups, the number of atherosclerotic vessels had 81% specificity at one-year follow-up. CONCLUSIONS: Among patients with acute chest pain and normal ECG, apoB/apoA1, SAA and the number of atherosclerotic vessels are the most powerful predictors of MACE at three-month and one-year follow-ups.


Assuntos
Dor no Peito , Angiografia por Tomografia Computadorizada , Humanos , Seguimentos , Estudos Prospectivos , Valor Preditivo dos Testes , Angiografia Coronária , Biomarcadores , Apolipoproteínas B
14.
Physiol Mol Biol Plants ; 28(9): 1695-1711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36387979

RESUMO

The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01222-3.

16.
SAGE Open Med Case Rep ; 10: 2050313X221100881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646370

RESUMO

Duchenne muscular dystrophy is a severe, X-linked, progressive neuromuscular disorder clinically characterised by muscle weakening and extremely high serum creatine kinase levels. A 1-year-old Chinese patient was diagnosed with early-onset Duchenne muscular dystrophy. Next-generation gene sequencing was conducted and the Sanger method was used to validate sequencing. We identified a novel nonsense mutation (c.6283C>T) in DMD that caused the replacement of native arginine at codon 2095 with a premature termination codon (p.R2095X), which may have had a pathogenic effect against dystrophin in our patient's muscle cell membranes. We discovered a novel nonsense mutation in DMD that will expand the pathogenic mutation spectrum for Duchenne muscular dystrophy.

17.
Mater Today Bio ; 14: 100256, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35469253

RESUMO

In nature, barnacles and bacterial biofilms utilize self-assembly amyloid to achieve strong and robust interface adhesion. However, there is still a lack of sufficient research on the construction of macroscopic adhesives based on amyloid-like nanostructures through reasonable molecular design. Here, we report a genetically programmed self-assembly living-cell bioadhesive inspired by barnacle and curli system. Firstly, the encoding genes of two natural adhesion proteins (CsgA and cp19k) derived from E. coli curli and barnacle cement were fused and expressed as a fundamental building block of the bioadhesive. Utilizing the natural curli system of E. coli, fusion protein can be delivered to cell surface and self-assemble into an amyloid nanofibrous network. Then, the E. coli cells were incorporated into the molecular chain network of xanthan gum (XG) through covalent conjugation to produce a living-cell bioadhesive. The shear adhesive strength of the bioadhesive to the surface of the aluminum sheet reaches 278 â€‹kPa. Benefiting from living cells encapsulated inside, the bioadhesive can self-regenerate with adequate nutrients. This adhesive has low toxicity to organisms, strong resistance to the liquid environment in vivo, easy to pump, exhibiting potential application prospects in biomedical fields such as intestinal soft tissue repair.

18.
Transl Cancer Res ; 10(2): 938-952, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35116422

RESUMO

BACKGROUND: Studies on the interactions of single long non-coding RNA, microRNA, and mRNA have many limitations; therefore, it is necessary to study the complex regulatory network of gastric cancer (GC) pathogenesis systematically. METHODS: In this study, gene and miRNA expression data for GC were downloaded from The Cancer Genome Atlas and used for transcriptome profiling, differential gene analysis, and construction of an lncRNA-miRNA-mRNA regulatory network in conjunction with an online database to identify the key genes and subnetworks in GC pathogenesis. Real-time quantitative polymerase chain reaction was used to detect the expression of hub lncRNAs in 54 paired GC and matched normal mucosal tissues. RESULTS: We constructed an lncRNA-miRNA-mRNA competitive endogenous RNA regulatory network containing 1,626 network nodes and 2,704 interactions. LncRNA ADAMTS9-AS2 and PVT1 were identified as key node genes in this competitive endogenous RNA network. Quantitative reverse transcription-polymerase chain reaction revealed ADAMTS9-AS2 downregulation and PVT1 upregulation in 54 pairs of GC and normal tissues adjacent to the cancer tissues. CONCLUSIONS: This study systematically analysed the lncRNA-miRNA-mRNA regulatory network in GC and identified ADAMTS9-AS2 and PVT1 as key regulatory genes in this network, providing new understanding of GC pathogenesis and insights for its early diagnosis and treatment.

19.
Transl Cancer Res ; 10(9): 3930-3938, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35116692

RESUMO

BACKGROUND: Cytokine-induced killer cells (CIKs) adoptive cell transfer (ACT) is a common malignant tumor treatment method. Interleukin-2 (IL-2) is one of the essential cytokines for CIKs cultures. In different phase of CIKs (quiescent and exponential growth), due to different active states and IL-2R expression of the CIKs surface, different doses of IL-2 are required. However, most studies, only addressed the effects of IL-2 concentrations on the function of CIKs, and the differences between varied administration methods of IL-2 have not been explored. METHODS: This study established a novel sequential administration methods for IL-2. Different concentrations of IL-2 were added during different CIKs induction phases. Then, the proliferation ability of CIKs was evaluated using cell proliferation curves. The immune phenotype was analyzed by flow cytometry (FCM), and IFN-γ secretion ability and cytotoxicity were detected using enzyme-linked immunosorbent assay (ELISA) kits and cell counting kit-8, respectively. Multiple comparisons were conducted between each group to compare the function of CIKs in 12 experimental groups. RESULTS: As the IL-2 concentration increased, the number of CIKs continued to increase in each group, but the function of CIKs was not positively related to its number: CD3+ CD56+ subpopulation ratio, INF-γ secretion ability, and cytotoxicity showed irregular changes. During the quiescent and exponential growth phases, adding 300 and 1,000 U/mL IL-2 respectively achieved powerful CIKs (cell numbers of day 16: (384.37±2.05)×106/mL, proliferation: 128.12, CD3+ CD56+ subpopulation ratio: 40.9%, INF-γ secretion ability: 542 pg/mL, cytotoxicity: 40:1, 74.22). CONCLUSIONS: Different concentrations of IL-2 had a greater influence on the biological function of CIKs in different growth phases, and it is better to add IL-2 sequentially during the quiescent and exponential growth phases of CIKs.

20.
ACS Appl Bio Mater ; 4(4): 3518-3523, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014436

RESUMO

Alternative to the traditionally independent production of lipase, chemical synthesis of nano-carriers, and then preparing nanoimmobilized enzymes, we exploit a yeast genetically programmed virus biomimetic lipase nanoreactor in a sustainable manner. The nanoreactor biogenesis process integrated lipase production, protein component (coat-protein subunit and scaffold protein) production, self-assembly of protein components, and the encapsulation of lipase into protein nanocages using a simple process. It included overexpression of nanocage components, coat-protein subunits, and fused lipase-scaffold proteins and subsequent spontaneous self-assembly and encapsulation based on the specific interaction between the coat-protein subunit and the scaffold protein fused in the target lipase enzyme. The genetically programmable lipase nanoreactor showed improved stability under various harsh conditions, and was validated in fatty acid methyl ester synthesis with 86% yield at a high concentration of waste cooking oil (200 mM), which demonstrates the robustness and feasibility of the lipase nanoreactor in biodiesel production.


Assuntos
Materiais Biocompatíveis/química , Lipase/genética , Nanopartículas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Lipase/metabolismo , Teste de Materiais , Tamanho da Partícula , Óleos de Plantas/química , Óleos de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...